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Abstract

The ultimatum game is a simple game in which the first player (the proposer) proposes to divide a sum of money between herself and
the second player (the responder) who subsequently chooses to accept or reject the proposal. If accepted, the money is distributed
accordingly, if rejected neither of the players receives a pay-off. Empirical studies demonstrating that human offerers tend to offer
relatively even (or “fair”) splits of the sum of money and that responders are inclined to reject “unfair” offers, have been taken as a sign
for “irrational” behavior in the sense that these choices do not maximize the pay-offs for those involved.
In this work we provide a software library that allows one to easily explore alternative scenarios. The software allows one to compose
novel policies (e.g., decision mechanisms that possibly depend on prior data), construct a (possibly mixed) population of agents that
utilize these policies, and explore the progression of their offers and responses as multiple rounds of the ultimatum game are played
within a population of a set size. In the current poster we devote special attention to sequential learning policies: we create a number
of agents for which the pay-offs of the game are initially unclear—corresponding to a human player to whom the game is not explained
or does not understand the game—and that strive to learn the best actions (both offers and responses) by some form of trial and error.
Here we explore typical multi-armed bandit (MAB) approaches to operationalize agent learning such as Thompson sampling (e.g.,
choosing an action with a probability proportional to the agents current belief that an action is optimal).

1. Setup

The core of the UltimateSim python library consists of the
following files and classes:
• config.py Editing the config.py file allows one to

setup—without further programming efforts—different
simulations of the Ultimatum Game with different popu-
lations of agents. The following parameters can be set:
– popSize The number of agents (an even Int) in the

population; note that agents are first assigned, with
probability 1

2 to be offering or responding in a certain
round of the game, and subsequently are (uniformly)
randomly matched with another agent to play the game.

– offerPolicies A numpy array containing the names
(String) of the offer policies in the population.

– respondePolicies A numpy array containing the
names (String) of the response policies in the popu-
lation.

– probMatrix A numpy matrix containing the probabil-
ity of occurrence of distinct policies. E.g., when using 2
offerPolicies and 3 responsePolicies, the matrix[1
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would state that agents have a combination of offer-
policy 2 and response-policy 3 with probability 3

8. Note
that the sum of elements of this matrix should be 1.

– simLength The length of each simulation (Int). Note
that the simulation length is the number of total rounds,
and hence the total number of games played is 1

2 ∗
popSize ∗ simLength. The number of times an in-
dividual agent is on the offering (or responding) side of
a game is in expectation 1

2 ∗ simLenght.
– nSims The number of simulations (Int) to run. For

each new simulations a new set of agents (Popula-
tion) with offer- and response-policies according to the
probMatrix is instantiated.

– Next to the above, there are a number of settings,
such as createPlots (Bool) which control the out-
put and storage of a simulation. These should be self-
explanatory.

• main.py File that runs the main simulations.
• class Simulation The class that controls the full simula-

tion study. This class instantiate a population, and seeds
it with agents. Subsequently, the simulation is excuted
(by the Run() method). The Simulation class also con-
tains methods to create plots and summary statistics.

• class Population The class that controls a population.
A population contains a number of agents, and plays a
number of rounds of the iteration game. This class con-
tains methods for creating agents, and playing subse-
quent rounds of the game.

• class Agent The Agent class implements the an agent,
storing its individual data in a simulation and storing / call-
ing its individual offer and response policies.

• class offerPolicy The base class for implementing
an offer policy; by inheriting from this class new poli-
cies can be created. See for a short working example
RANDOMOffer.py

• class responsePolicy Similar to the offer Policy, but
this time defining the response strategy of an agent.

The above allows users to setup a simulation of agents
that each, with some probability have a distinct offer- and
response- policy in an iterated version of the ultimatum
game. Calling python main.py runs the set number of
simulations and stores their data.

2. Policies

Currently, we have implemented only a limited number of
offer- and response-policies, and we are actively working to
create alternatives. Currently implemented are:
• RANDOM: Agents following this strategy exhibit the fol-

lowing behavior:
– Offer: A uniformly randomly selected number from 0 to
10.

– Response: Accept the offer with probability p (default
1
2), reject with probability (1− p).

• REM: The “Rational Economic Man” policy. Agents us-
ing this offer- and response-strategy exhibit the following
behavior:
– Offer: A certain of of 1
– Response: Accept any offer higher than 0 (offers of 0

are accepted with probability p, default 1
2).

• THOMP1: The Thompson sampling 1 agent is our first
attempt of creating an agent that learns from its inter-
actions; while not having any clear understanding of the
game, the agent tries to learn which of the (discrete)
choices at her disposal provides the highest pay-off.
– Offer: For the offer the agents tries to estimate the

probability that one of the eleven [0, 10] choices is se-
lected by the responder (ignoring who the responder
is) by putting a Beta(1, 1) prior over the probability pi
that offer i is accepted. In each round this prior is up-
dated according to the succes of the offer resulting in a
Beta(1+ s, 1+ f ) posterior distribution. We then obtain
a draw from each posterior pi, and subsequently multi-
ply the draw by the actual offer to estimate the value of
the offer. Finally, we choose the action with the highest
E[ri] = p̂ii.

– Response: Here we implement standard Thompson
sampling for a 2-armed Bernoulli bandit; any result
higher than 0 is counted as a succes for the current
arm.

Note that the offer and response sub-policies can be mixed;
hence, we can easily create a population of random offerers
that use a rational response.

We are primarily interested in further exploring policies akin
the THOMP1 policy: we aim to investigate the behavior over
time of populations of self-learning agents.

3. Preliminary results

To briefly demonstrate the utility of the software we present
the outcomes of two simple simulation studies. The first
Figure shows the progression of the overall profit made
(averaged over m = 100 simulations, and averaged over
agents—the bound present the 5th and 95th percentile) in
the different rounds when simulating a population contain-
ing 200 agents of which 7

10 of the agents (in expectation) im-
plement the THOMP1 policy, while the other 3

10 implement
either the REM policy or a mix of the REM and THOMP1
offer/response policies. Hence, there is a small number of
rational players, while the other players try to learn the rules
of the game as they go along. The Figure shows that the
THOMP1 players catch on and learn how to play the game
in a “rational” way. However, note that in early rounds of the
game, a substantial number of “irrational” offers is made.

The second Figure similarly shows the progression of the
overall profit made per round, but this time we substitute
the REM policies for RANDOM agents; hence, a number of
players just makes a random choice in the game.

Conclusions and Future work

We have briefly introduced UltimateSim, a python library for running simulations of mixed population agents playing an Ultimatum
Game. While the software can be used off-the-shelf to run simulations, our core interest is in further developing offer- and response-
policies that are stochastic and sequentially learning. Our naive Thompson sampling policy presents a first step in this direction, we
aim to further understand the behavior of adaptive learning agents when iteratively playing the ultimatum game in a population of
alternative agents.
The software—which is under active development—can be found at https://github.com/Nth-iteration-labs/ultimatesim
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